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Abstract 
Contract cheating, instances in which a student enlists someone other than themselves to produce 
coursework, has been identified as a growing problem within academic integrity literature and in 
news headlines. The percentage of students who have used this type of cheating has been reported 
to range between 6% and 15.7%. Generational sentiments about cheating and the prevalent 
accessibility of contract cheating providers online seems to only have exacerbated the issue. The 
problem is that no simple means have been identified and verified to detect contract cheating 
because available plagiarism detection software is ineffective in these cases. One method 
commonly used for authorship authentication in nonacademic settings, stylometry, has been 
suggested as a potential means for detection. Stylometry uses various attributes of documents to 
determine if they were written by the same individual. This pilot assessed the utility of three easy-
to-use and readily available stylometry software systems to detect simulated cases of contract 
cheating academic documents. Average accuracy ranged from 33% to 88.9%. While more research 
is necessary, stylometry software appears to show significant promise for the potential detection 
of contract cheating. 
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Detection of Online Contract Cheating Through Stylometry: A Pilot Study 
 Various forms of cheating have plagued education since the inception of assessments of 
learning. Higher education, in particular, has endeavored to maintain academic integrity to provide 
meaning to the degrees they confer. Online programs have struggled with student authentication 
in various ways yet there are limited means of verifying authorship beyond the use of plagiarism 
detection technologies (Newton, 2018; Singh & Remenyi, 2016; White, 2016). Higher education 
faces an additional hurdle in that student participation in courses is remote and it cannot always be 
assured that the registered student is the individual logging into the course and completing 
assignments. In attempts to minimize cheating on traditional assessments such as quizzes and 
exams, higher education institutions often shift more focus on written assignments as they require 
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a higher level of thought and reasoning, and, in theory, are harder to thwart through simplistic 
cheating like copying from neighbors (Bretag et al., 2018; Newton, 2018; Singh & Remenyi, 2016; 
White, 2016). Even written assignments have been subject to various forms of duplicitous student 
activities. Plagiarism, the use of the words of another rather than the author’s words or ideas, has 
been prevalent through the history of higher education. However, with the increased use of 
sophisticated plagiarism detection, the cutting and pasting of material from sources has become an 
unreliable and risky alternative for students. Contract cheating, also referred to as ghostwriting, is 
when a student employs an individual to complete assignments for them, has subsequently become 
more appealing. The benefit of using a contractor to complete coursework or writing assignments 
for students is that the resulting document is generally original thus not subject to detection by 
text-matching software (Lancaster, 2019, Lines, 2106). Current data indicates that “up to 16 
percent of students have paid someone to do their work and that the number is rising” (Smith, 
2019, para. 17). 
 Contract cheating is considered a relatively new form of cheating, estimated to only be a 
few hundred years old. While sharing of previous assignments and enlisting the help of others to 
complete work has been around for some time, such as within the U.S. fraternities and sororities, 
the 1940s seemed to mark a turning point for contract cheating. At this time, there was a significant 
uptick in the numbers of advertisements for ghostwriting services in New York City newspapers. 
Proliferation continued through the 1960s and 1970s, which included solicitations for assistance 
in writing papers, theses, and dissertations (White, 2016). While these services became more 
widely available, there was still the problem of the student finding the contractor as well as 
completing payment. This dynamic completely changed with the advent of the Internet. Services 
became easily discoverable and payment could be made anonymously to anyone around the globe. 
As such, essay or paper mills, in addition to individual writers, became a realistic and timely option 
for students looking to circumvent work (Singh & Remenyi, 2016; White, 2016). 
 According to Lines (2016), the use of such ghostwriting services has been steadily 
increasing over time:  

while collusion in the form of paying another person to complete all or part of an
 assessment is not a new form of cheating, technological advances and changes in
 the socio-economic context of tertiary education in recent years have led to a
 worrying trend in which this practice appears to be becoming more widespread.
 (p. 889–890) 
Lancaster (2019) estimated the 2014 revenue for the industry to be in excess of $100 million. Both 
supply and demand appear to be very healthy for this form of commerce. 

In a study by Rigby, Burton, Balcombe, Bateman, and Mulatu (2015), students were very 
willing to purchase papers. The emphasis on high grades, as well as the economic incentive of 
advanced degrees (which can significantly increase lifetime compensation in the workplace) is a 
possible explanation (Lines, 2016; Rigby et al., 2015). While the one-time or occasional use of 
ghostwriting for written course assignments could be problematic but not cataclysmic, the notion 
of a student receiving credit for something they did not do is disturbing. More importantly, though, 
is the award of degrees in which students have bypassed necessary learning through employing 
the services of another person (Lancaster, 2019).  

As graduate school provides critical research education and skills that provide the basis for 
careers in science and academia, circumventing this learning could foster erroneous research 
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practices (Singh & Remenyi, 2016). For example, it is now possible for someone to have their 
dissertation written, in its entirety, for $3,000 to $5,000 (Top 20 Writing Services, 2019). An 
individual can be awarded one of the most coveted degrees in the world, the doctorate, with little 
or no original work by the student (Lancaster, 2019; Lines, 2016). The issue of contract cheating 
is so rampant that PayPal has recently refused to pay known contract cheating providers through 
their service, though after six weeks of the embargo many essay-writing services are still 
successfully accepting PayPal payments (Bailey, 2019; Coughlan, 2019). 

Even in light of the apparent rise in contract cheating, little empirical evidence exists on its 
prevalence or impact within higher education. Unfortunately, an accurate estimate is difficult to 
garner as data on the actual prevalence of this type of cheating only comes to light if or when a 
student is caught (Bretag et al., 2018; Harper et al., 2018; Lines, 2016; Singh & Remenyi, 2016). 
Available data does, however, indicate that contract cheating is a concerning issue in the 
postsecondary sector. Although the incidence of students partaking in contract cheating is still 
small (reported to be approximately 3% in the U.S.), this estimate means that 1.7 million students 
are purchasing papers or other services (National Center for Education Statistics, 2019; Wallace 
& Newton, 2014).  

The one consensus about contract cheating among researchers is that it is challenging to 
detect. Current text-matching detection applications are ineffective in identifying this type of 
cheating (Anekwe, 2010; Dawson & Sutherland-Smith, 2018; 2019; Lancaster, 2019; Lines, 2016; 
Newton, 2018; Rogerson, 2014; 2017; Singh & Remenyi, 2016). While Turnitin has recently 
launched its proprietary Authorship Investigate service that aims to detect contract cheating, it has 
yet to be widely adopted by higher education institutions (Turnitin, 2019). As of yet, this new 
Turnitin service has not been vetted through empirical scholarly research (Singleton & Ricksen, 
2019). Moreover, it appears the service relies on Turnitin’s database of previous student work, 
which may not include all assignments or that of newer students (Turnitin, 2019). 

As Rogerson (2017) stated, the lack of effort on the part of higher education stakeholders 
to act against contract cheating is problematic. The claim that contract cheating is difficult, if not 
impossible, to detect has not been explored by exigent research and very little empirical evidence 
of the effectiveness of contract cheating detection methods exists. Because of these facts, Singh 
and Remenyi (2016) specifically call for a proactive intervention, as  

academic cheating undermines the good name of the institution and calls into 
question the integrity of both the faculty and students. There is every reason for a 
university to take all forms of cheating seriously, and to eliminate it wherever 
possible. (p. 36) 

Thus with the increasing threat of contract cheating, it is time for higher education to address how 
to detect and handle this category of academic integrity violation (Medway, Roper, & Gullooly, 
2018; Newton, 2018; Slade, Rowland, & McGrath, 2019).  

One promising tool that can be used in detecting ghostwritten work is stylometry, the study 
of the writing characteristics of a specific author. To address contract cheating, Juola (2017) noted 
that “stylometry is an important and relatively mature technology that can be usefully applied to 
address a key problem in education” (p. 196). Dawson and Sutherland-Smith (2019) reiterated that 
research is needed in order to “focus on approaches to improve detection rates” (p. 291) 
specifically through empirical studies. Higher education needs “a process approach… to identify, 
document, and investigate irregularities using technological, interpretive, and conversational 
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means” (Rogerson, 2017, p. 3). Therefore, this study set out to explore the utility of user-friendly 
stylometry analysis software for the detection of contract cheating of written assignments. The 
following research questions were used to guide this study:  

RQ1: What is the accuracy of user-friendly stylometry analysis software? 

RQ2: Which of these software performed with the highest accuracy? 
 

Review of Relevant Literature 
Defining Contract Cheating 
 Singh and Remenyi (2016) defined contract cheating as the “practice of hiring a writer (or 
writers) to produce a piece of work that follows a predefined style, and none of the original writing 
credit is attributed to the ghostwriter” (p. 37). Therefore, contract cheating is not generally 
classified as plagiarism, in terms of stealing or theft of words or ideas. Instead, it is authorship 
fraud, stating that the identified author wrote the work. Other researchers have used more 
straightforward definitions, stating that anytime a student outsources assignments to fall within 
tailored instructions of the student, they have conducted contract cheating (Bretag et al., 2018; 
Clare, Walker, & Hobson, 2017; Harper et al., 2018; Lancaster, 2019; Lines, 2016). While contract 
cheating and ghostwriting are often used synonymously, Rogerson (2017) used a more specific 
term, “cyber-pseudepigraphy” (p. 1), to describe these practices through the use of the Internet. 
While there are minor differences in interpretations as to what constitutes contract cheating, or 
ghostwriting, the consensus among researchers is that it is an egregious form of cheating (Bretag 
et al., 2018; Clare, Walker, & Hobson, 2017; Harper et al., 2018; Lancaster, 2019; Lines, 2016; 
Rogerson, 2017).  

Contract Cheating, Ghostwriting, and Paper Mills 
 In certain writing genres, ghostwriting and the use of pseudonyms have been 
commonplace, such as in fiction and among autobiographies (Farhi, 2014). Rarely does this 
practice seem to be problematic for authors or readers when agreements concerning terms of 
ownership and compensation are handled transparently. Such practices are also used in medical 
writing with pharmaceutical companies hiring authors to write studies on their medications and 
honorarily listing prestigious doctors as the actual authors. According to the National Institutes of 
Health, anywhere from 10 to 40% of research articles involving pharmaceuticals may be 
ghostwritten. Such practices are generally frowned upon, and in some cases subject to violations 
of ethical agreements with funding agencies, yet they continue to occur (Anekwe, 2010). Much 
less tolerance seems to exist for the use of contract or ghost writers by students to complete 
academic requirements (Lines, 2016).  

Prevalence and Trends in Contract Cheating. A limited number of studies have 
determined the prevalence and trends of contract cheating in academia. Newton (2018) reviewed 
65 studies dating from 1978 through 2014 for student self-reported conduct of contract cheating. 
In 1978, the average prevalence among respondents was 3.52%, increasing steadily to 15.7% in 
2014, which was estimated to equate to approximately 31 million students. Although the details 
about the studies and their potential equivalence for comparison were lacking, it does appear that 
contract cheating is increasing among students and the absolute number of potential participants 
is disconcerting. In 2013, Turnitin conducted a study in which 7% of student respondents admitted 
to purchasing at least one assignment. Rigby et al. (2015) found that under typical academic 
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circumstances, 50% of the sample of students reported they would be willing to risk purchasing a 
written assignment. Two recent studies were completed in Australia, one querying academic staff 
and the other focused on students. The survey of 916 Australian academic staff discovered that 
66% of respondents believed they have had students submit ghostwritten work on at least one 
occasion and 40% believed this had occurred five or more times (Harper et al., 2018). Among the 
814 Australian students surveyed, 6% admitted to partaking in contract cheating (Bretag et al., 
2018). Discussion within the literature suggested that these percentages are likely an 
underestimate, as students may not truthfully report transgressions (Bretag et al., 2018; Harper et 
al., 2018; Lines, 2016; Ma, Wan, & Lu, 2008; Rigby et al., 2015; Wallace & Newton, 2014). 
Detection of Contract Cheating 
 As the existing literature has noted, contract cheating is very difficult, if not impossible, to 
detect with precision with current methods and tools. In particular, the fact that ghostwritten works 
can be of relatively good quality, or at least sufficient enough to receive a passing grade, 
complicates matters. Because insufficient research supports a specific method of detection, 
Rogerson (2017) stated “there is a need for an evolutionary approach to enhance evaluation skills 
beyond discipline related practices and academic writing conventions…. An approach that can 
streamline methods of determining irregularities and documenting evidence for evaluation and 
discussion” (p. 2). The literature has advocated only limited approaches to exposing contract 
cheating. These include looking for clues of radical differences in student performance across 
assignments, use of assessment data for comparison of assignments within courses and institution-
wide, as well as ensuring proper documentation of past violations of academic integrity as student 
cheaters were found to act in a nonrandom fashion and likely to be repeat offenders (Clare, Walker, 
& Hobson, 2017; Taylor, 2014; Rogerson, 2017). The use of software and computer aids has also 
been suggested to confront contract cheating. Throughout the literature, no consensus exists on the 
most effective means of detection; moreover, what methods do show promise may suggest 
potential ghostwriting but do not necessarily prove it (Lines, 2016; Rogerson, 2014; 2017). 

Evaluator-Based Detection. Various researchers have recommended that observations of 
inconsistent student writing by evaluators (i.e., faculty or teaching assistants) provide a means for 
detecting contract cheating. Lines (2016) suggested that student writing styles need to be tracked, 
though this technique may be unable to distinguish between genuine student work (albeit it 
significantly improved or of poor quality) when compared to past performance. Also, as noted by 
Singh and Remenyi (2016), graders and even faculty may not be adequately familiar with the 
student’s writing style and quality of work to notice. Further, universities do not appear to be 
directing enough resources to ensure that students are the ones completing coursework. 
Overworked faculty and teaching assistants also may not have the time or energy to commit to 
unassisted attempts to “hand” detect such occurrences (Singh & Remeny, 2016). 

In a study of products of essay mills in the U.K., Medway, Roper, and Gillooly (2018) 
purchased two papers to be evaluated by ten evaluators. The participants were not informed of the 
goal of the study. Not one of the graders detected issues with either paper, although these 
individuals did not have reference to previous works of writers. Dawson and Sutherland-Smith 
(2018) completed a study which provided seven graders with 20 assignments to grade in two 
groups of ten assignments of which three were purchased by an online provider. Participants were 
explicitly asked to identify which papers were a product of contract cheating or written by a “real” 
student. The average accuracy of detection was 57.2%. If considering only the contract papers, 
markers were able to identify 62% of the works. In 11% of cases, markers wrongly identified a 
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student paper as ghostwritten. In a follow-up study, Dawson and Sutherland-Smith (2019) enlisted 
fifteen graders which were given 20 papers, six of which were purchased, to evaluate. The graders 
were then given training on identification of contract cheating and subsequently given an 
additional 20 papers to evaluate, again with six of those provided being purchased online. True 
positive (correct identification of contract paper) improved from 17.3% pretraining to 24.6% 
posttraining. False negative (failing to detect a contract paper) dropped from 12.6% to 5.3%. 
Overall, papers were correctly identified as either student or contract work 75.3% before training 
and 85.7% after training. The presentation of results was sometimes confusing as some values did 
not include all papers which inflated reported values (Dawson & Sutherland-Smith, 2019). 

Rogerson (2017) found similar difficulties in detection by graders noting that humans may 
or may not perceive writing irregularities resulting in an inability to distinguish between contract 
and low-quality student writing. Further, inconsistencies or incongruities do not equate to any level 
of assurance of contract cheating. Even if a paper is suspected of being ghostwritten by a grader, 
it would be hard to prove or take any action (Rogerson, 2017). Dawson and Sutherland-Smith 
(2019) came to a similar conclusion stating that “marker detection alone is not necessarily 
sufficient evidence to satisfy the burden of proof for a contract cheating allegation” (p. 722). 

Other techniques suggested as possible solutions for the detection of contract cheating can 
be likened to “clue sleuthing.” Both Lines (2016) and Rogerson (2014) found that ghostwritten 
assignments often include vague answers and lack the requisite depth. Additionally, ghostwriters 
frequently do not follow assignment instructions (Rogerson, 2014). Document metadata may also 
reveal clues such as the revelation of the document author information not matching the name of 
the student (Lines, 2016). Dramatic improvements in writing or language can also raise caution 
flags. Outliers in proposed grades were deemed to be suspicious. Other language-based warning 
signs include use of spelling or colloquialisms not common in the native language of the student. 
For example, the use of British English versus that of the U.S. is hypothetically a signature of a 
ghostwriter (Lines, 2016; Rogerson, 2014; 2017). While text-matching detection software does 
not work well to directly catch ghostwritten work, researchers found that abnormally low Turnitin 
similarity indices are undoubtedly worthy of further investigation, particularly if the references 
section of the work are not flagged, assuming they have not been omitted from analysis (Lines 
2016; Rogerson, 2017). An additional clue common among contracted submissions is 
inconsistencies in references. These may include odd, very outdated, incorrect, or made-up 
references. Also, it was found that ghostwriters sometimes mix various components of references 
(e.g., using the author and publication date from one article while using the title and journal details 
from another) in order to thwart attempts at plagiarism detection (Lines, 2016). 

Computer-Assisted Detection. While available text-matching detection technologies 
have proven to be relatively effective at catching textual overlaps with references, no software 
product currently exists that specifically targets contract cheating. Within attempts to detect 
plagiarism through text-matching, a technological arms race has occurred in which education 
stakeholders rush to find solutions to cutting and pasting of reference material while students 
search for ways around such safeguards. Currently, available detection programs cannot 
adequately protect against ghostwriting (Dawson & Sutherland-Smith, 2018; Juola, 2017; Lines, 
2016; Rogerson, 2017). Turnitin’s Authorship Investigate is one of the first integrated systems to 
detect contract cheating but comes at an additional cost and has yet to face the scrutiny of 
researchers (Turnitin, 2019; Singleton & Ricksen, 2019). To date, it seems that universities are not 
willing to invest in the resources, human or financial, necessary to combat contract cheating 
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through available methods of detection. Moreover, faculty and their assistants often do not have 
the time or tools available to make such an undertaking reasonably timely (Juola, 2017). 

Stylometry  
One method of analysis that has potential for use in detection of contract cheating is 

stylometry, the analysis of authorial style and writing attributes. In theory, this method of inquiry 
can determine the differences between authors, thus if a difference exists between genuine student 
submissions and those suspected of being ghostwritten, education stakeholders potentially have 
actionable evidence (Juola, 2017). 

Uses of Stylometry. Stylometry has been used in a range of applications since it was first 
introduced. Stylometry has been implemented in forensic authorship analysis, such as in criminal 
and civil lawsuits. Intelligence agencies have also adopted the technique to determine the 
authorship of threats, Internet activity, and other potentially malicious writings (Brocardo, Traore, 
& Woungang, 2015; Neal et al., 2018). Because people have unique authorial fingerprints or 
idiolects, one author can be distinguished from another, e.g., the use of “near” instead of “by” 
(Juola, 2017, p. 189). In the analysis of the Federalist Papers, it was found that Alexander Hamilton 
never used the word “whilst” and James Madison never used the word “while” (Juola, 2017, p. 
192; Mosteller & Wallace, 1963). Stylometry techniques also successfully “outed” J. K. Rowling 
as the real author of works produced under a pseudonym (Juola, 2017).   

The goals of stylometry can vary depending on the type of outcome required by a 
researcher. In authorial attribution, the aim is “to determine the probability that a document was 
written by a particular author based on stylistic traits rather than the content of the document” 
(Neal et al., 2018, p. 86). Authorial verification entails a “binary classification problem that decides 
if two documents were written by the same author” (Neal et al., 2018, p. 86). When an author 
attempts to disguise their identity, termed obfuscation or adversarial stylometry, they will attempt 
to mask authorial style (Neal et al., 2018).  

Stylometry Techniques. Various techniques of textual analysis exist within stylometry. 
Lexical analysis incurs the use of word-based and character features, which has the advantage of 
being robust against text “noise” (i.e., spelling and grammar errors). Lexical analysis includes 
word n-grams (i.e., repetition of words “n” times in a document, where “n” is the number of 
occurrences), word frequencies, words per sentence, the number of sentences, and vocabulary 
richness. Structural features may also be considered such as indentations, misspellings, grammar, 
and words specific to particular social or cultural backgrounds (Neal et al., 2018; Sarwar, Li, 
Rakthanmanon, & Nutanong, 2018). Syntactic features, which include punctuation and parts of 
speech, can also be employed to strengthen analyses (Brocardo, Traore, & Woungang, 2015).  

The availability of fast, powerful, and inexpensive computers has allowed for advanced 
techniques to be developed. Machine learning classifiers and clustering have been recently adopted 
in stylometry analysis. This technique uses an algorithm that mathematically describes proximity 
of different data-points allowing for the distinction between data that naturally should or should 
not be grouped together. Another contemporary method are neural networks, Chain Augmented 
Naïve Bayes (CAN), and nearest neighbor calculations. Neural networks enlist a committee of 
machines that vote on author identity. CAN combines Bayesian analysis and n-grams. CAN was 
used in the exploration of authorship of the Federalist Papers and using only three features, 
correctly identified the author with 95% accuracy. The premise of nearest neighbor techniques is 
to determine the intertextual distance from a sample of training documents. Used regularly in 



Detection of Online Contract Cheating Through Stylometry: A Pilot Study 

Online Learning Journal – Volume 24 Issue 2 – June 2020                    5 149 

authorship attribution, differences in word frequencies can be calculated through chi-square 
analysis or the presentation of z-scores (Neal et al., 2018).  

Best practices in stylometry have also been developed through numerous studies. Sample 
documents should be preprocessed for normalization such as removing nonalphabetical characters, 
capitalization, citations, names, cities, and dates. Next, selected features should be extracted (e.g., 
parts of speech, n-grams). Classification is then completed via comparison to training document 
features. Finally, an output is provided that provides authorship probabilities or designations (Neal 
et al., 2018; Prasad, Narsimha, Reddy, & Babu, 2015). Neal et al. (2018) determined that the 
accuracy was maximal when numerous examples for each author existed and when the total 
number of potential authors was small. Findings showed that documents to be analyzed should be 
on similar topics or from the same genre (e.g., a journal article vs. a mystery novel) and share 
authorial sentiment.  

Athira and Thampi (2018) concluded that the ideal length of sample texts should be 500 
words and when using this size of text, Brocardo, Traore, and Woungang (2015) had a 95.7% 
accuracy rate. A representative scenario for evaluation of authorship was noted to be composed of 
a training sample of 20 text blocks written by the known author vis á vis five blocks by the 
unknown author. Among the numerous types of analytics used by researchers, Sarwar, Li, 
Rakthanmanon, and Nutanong (2018) found that logistic regression with five documents per author 
provided sufficient accuracy for identifying authorship. In particular, the use of n-grams of the 
length of two to five with logistic regression was found to successfully delineate between authors 
(Prasad, Narsimha, Reddy, & Babu, 2015). Juola (2017) stated that a mixture of methods and 
feature extraction provides the most accurate results. Finally, it has also been established that 
simpler techniques are ideal, as these allow for more mainstream adoption and, in most cases, had 
a negligible impact on accuracy (Neal et al., 2018; Sarwar, Li, Rakthanmanon, & Nutanong, 2018).  

 
Method 

 The purpose of this quantitative and descriptive pilot study was to evaluate commercial-
off-the-shelf (COTS) stylometry software for its utility in potentially detecting contract cheating 
(Juola, Sofko, & Brennan, 2006; Salkind, 2012). The reasoning behind the use of COTS solutions 
is that they are readily available and relatively easy to use so that a student evaluator could employ 
them without a significant investment of time. Only free COTS software was included in this study 
to demonstrate that stakeholders would not be limited by financial investment restrictions (Juola, 
Sofko, & Brennan, 2006). An additional goal of this study was to assess stylometry software on a 
scenario that closely replicates how a student may submit work, both legitimate and ghostwritten. 

Sampling Procedures  
 In order to simulate a real-world scenario in which an individual attempts to pass contracted 
work as their own, two corpora were developed. The first corpus comprised a random selection of 
five text blocks of approximately 500 words each from five separate peer-reviewed journal articles 
genuinely written by a known author.  
 The second corpus was created through the collection of five randomly selected text blocks 
of approximately 500 words each from five separate peer-reviewed articles from the same journal 
written by individuals other than the “known” author. All corpora were extracted from the same 
journal, the Journal of Aviation Technology and Engineering, which is highly focused on a specific 
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discipline and is well-respected among scholars in the subject area. Further, the selection of articles 
from one focused journal was conducted to retain both context and topic areas per the 
recommendations of Neal et al. (2018). This second corpus was labeled as “other” author or 
someone other than the “known.”  

Block lengths (500 words) were chosen as these were endorsed by exigent research (Athira 
& Thampi, 2018; Brocardo, Traore, & Woungang, 2015; García & Martín, 2012; Puig, Font, & 
Ginebra, 2016). The text blocks from both corpora were collected in a way to retain the last 
complete sentence to allow as close to 500 words as possible to ensure that an incomplete sentence 
did not influence results (García & Martín, 2012). The number of source original documents from 
which text blocks were selected exceeded the minimum document and text block counts 
recommended by Prasad, Narsimha, Reddy, and Babu, (2015). This allowed for additional text 
blocks to be available as test documents.  

Test documents were randomly selected from both corpora to determine the ability of 
software to detect authorial differences. When a text block was used from a specific document, all 
other text blocks from that document were excluded from the known or other corpus during the 
specific analysis. Various combinations of corpora and test documents were examined. The most 
realistic contract cheating scenario would likely be the case in which only a single genuine work 
by a student (for example, something written in a controlled environment) would be available as a 
known author corpus. To test the software in this type of scenario, four text blocks (approximately 
2,000 words) from a known author document were used to compare to four text blocks from a 
document written by a different author. All text blocks written by authors not included in the 
comparison were lumped into the “other” group for the test run (Juola, 2017; Prasad, Narsimha, 
Reddy, & Babu, 2015). 
Measures 
 Three COTS software packages were used to evaluate text blocks. These were chosen 
specifically because each are backed by research implying positive results in author attribution as 
well as being free and readily available to download from the Internet. Moreover, with some brief 
reading of the programs’ instructions, their use is intuitive even for persons without backgrounds 
in computer languages or coding. The first software was Signature Stylometry System 1.0 (SSS) 
(Dawes, Merivale, & Millican, 2003). This system was developed to evaluate the Federalist Papers 
for authorship. Although this software is the most limited in capabilities, it is very simple to use 
and requires minimal computer memory processing power (Nieto, Sierra, Juan, Barco, & Cueto, 
2008). The statistical analysis results provided by SSS are various chi-square comparisons of two 
documents or two corpora based on word lengths, sentence lengths, paragraph lengths, letter 
counts, and punctuation counts. Also, SSS provided graphical depictions of these measures 
(Dawes, Merivale, & Millican, 2003; Millican, 2003).  
 The second software, Java Graphical Authorship Attribution Program (JGAAP), was 
developed by researchers at Duquesne University and has been suggested as a potential means of 
detecting contract cheating (EVL Labs, 2018, Juola, 2017; Juola, Sofko, & Brennan, 2006). This 
program has a significant number of options available for analysis. Text blocks are loaded into the 
program from which point document analysis options are chosen: canonicizers, event drivers, 
event culling, and analysis methods. Canonicizers standardize the format of text such as 
normalizing whitespace, removing numbers, or making text all lowercase. Event drivers are the 
items the software seeks for the actual analysis, which can include parts of speech, n-grams, lexical 
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frequencies (a measure of reader processing of text), and first words of a sentence. Event culling 
allows to select how event drivers may be used (for example, looking only for the most frequent, 
a value set by the user, occurrences). The analysis method refers to the statistical processing of the 
resultant data. For this study, Naïve Bayes and K-Nearest Neighbors (KNN) were the selected 
methods of analysis. Within each of these categories, there is a wide range of additional options. 
One downside to JGAAP is beyond a certain level of analysis complexity, such as using more than 
a dozen event drivers, computer memory issues can become a factor, preventing the completion of 
analysis by a typical desktop or laptop computer (EVL Labs, 2018). 
 The third software used, JStylo Authorship Attribution Framework v1.2 (JStylo), was 
created by the Privacy, Security, and Automation Lab (PSAL) at Drexel University and is an 
extension of JGAAP (Stolerman & Dutko, 2013). Much like JGAAP, JStylo has numerous options 
available for analysis. Documents are uploaded and users can choose from a range of features and 
classifiers to be examined during the analysis. Features include the items the software examines 
for statistical analysis such as average syllables in a word, average sentence length, and reading 
ease scores. Classifiers refer to the statistical testing options; in this case Naïve Bayes and Simple 
Logistic Regression were selected. Just as with JGAAP, advanced complexity testing (exceeding 
approximately a dozen features) can overwhelm computer memory capabilities, preventing the 
completion of analysis (Stolerman & Dutko, 2013). 

Recommendations from research utilizing these software packages guided the selection of 
program settings used in this study (Athira & Thampi, 2018; Brocardo, Traore, & Woungang, 
2015; García & Martín, 2012; Juola, 2017; Juola, Sofko, & Brennan, 2006; Prasad, Narsimha, 
Reddy, & Babu, 2015; Puig, Font, & Ginebra, 2016). The individual options chosen for each 
software are outlined in Tables 1, 2, and 3 for SSS, JGAAP, and JStylo, respectively.  
 

Table 1 
Selected Analysis Options for Signature Stylometry System 1.0 

Category Selected Options 
Corpora • Known author 

• Test (unknown) 
Features* • Word lengths 

• Sentence lengths 
• Paragraph lengths 
• Letters 
• Punctuation 

Classifiers • Chi-square 
Analysis Chi-square columns selected had minimum 

counts of 5; separated others into 
lower/higher columns. 

* Features are standard and cannot be modified by the user. 
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Table 2 
Selected Analysis Options for Java Graphical Authorship Attribution Program 

Category Selected Options 
Corpora • Training corpus 

o Known author 
o Other than known author 

• Test (unknown) 
Event Driversa • Rare words count 

• Binned naming times (Complexity) 
• Sentence count 
• Average sentence length 
• Average syllables in word 
• Character n-grams (n = 4) 
• Word n-grams (n = 2) 

Event Culling • Most common eventsb 
Analysis Methods • Naïve Bayes 

• K-Nearest Neighbor with Cosine 
Distanceb 

a These were matched as closely as possible to JStylo available options. 
b Settings were selected per the recommendations of software instructions (EVL Labs, 2018). 
 

Table 3  
Selected Analysis Options for JStylo Authorship Attribution Framework v1.2 

Category Selected Options 
Corpora • Training corpus 

o Known author 
o Other than known author 

• Test (unknown) 
Features* • Unique words count 

• Complexity 
• Sentence count 
• Average sentence length 
• Average syllables in word 
• Gunning-Fog Readability Index 
• Character space 
• Letter space 
• Flesch Reading East Score 
• Character n-grams (n = 4) 
• Word n-grams (n = 2) 

Classifiers • Naïve Bayes 
• Simple Logistic Regression 

Analysis Train on training corpus and classify unknown 
test documents 

* Features other than n-grams are standard for the most basic analysis in JStylo. N-grams were added per 
the recommendations of the literature (Posadas-Durán et al., 2017; Ragel, Herath, & Senanayake, 2013). 
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Research Design 
 This quantitative, descriptive study sought to determine the accuracy with which 
stylometry analysis software can identify if a work was not written by a known author in a 
simulation of contract cheating scenarios. Accuracy of detection was calculated using the below 
formula from Prasad, Narsimha, Reddy, and Babu (2015): 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
Number	Correctly	Identified

Total	Number	of	Items	Analyzed 

The results from each test run for individual software packages were recorded in Microsoft Excel 
for the calculation of descriptive statistics. 

Procedure. All three software packages were evaluated for their ability to distinguish 
between a known author and someone other than the known author. Due to differences in the way 
the programs work, different procedures had to be used with SSS versus JGAAP and JStylo. Since 
SSS has very simplistic capabilities, designed only to compare two documents or groups of 
documents rather than more complex corpora, the known author documents were loaded as one 
group to be compared with others. The selection of documents and testing procedures are outlined 
in Figures 1 and 2 in the Appendix. A simulation of a realistic contract cheating scenario in which 
only one document was compared to another was conducted through random pairing of documents 
written by different authors. Another assessment of SSS was made comparing all known 
documents to all unknown documents.  

In the testing of JGAAP and JStylo, one document from both the known and other corpora 
was randomly excluded for each analysis. The training corpus comprised the four remaining 
documents from both known and other groups. A range of one to five text blocks from the excluded 
“other” author document were used to compare with the training corpus. Also, one test run was 
completed to also include a randomly selected text block from the known author. Additional 
simulations of realistic contract cheating scenarios were conducted through the random pairing of 
documents written by different authors in which only one document (n = 4 text blocks) was 
compared to another (n = 4 text blocks). All remaining unknown author documents were classified 
as “other” during these test runs. The selection of documents and testing procedures are outlined 
in Figures 3 and 4 in the Appendix. 

Data Analysis. In order to assess each software program, accuracy of results would need 
to be acquired. In each case, the software either correctly or incorrectly matched the author of the 
text being tested. The numbers of successful and unsuccessful times an author was identified were 
collected and summed. The process was repeated for each software package and method of 
statistical analysis. The aforementioned accuracy formula was then used to determine overall 
accuracy for each software. 

 
Results 

 The results of the tests were mixed. JStylo performed well in all testing regimens while 
JGAAP presented inaccurate identification of known authors as the number of text blocks was 
reduced. SSS generally did poorly in all test types.  
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Statistics and Data Analysis 
 SSS Results. Due to the setup of SSS, accuracy was calculated as the number of significant 
chi-square tests versus the total number of tests for each round (n = 5). Overall, the test 
performance of SSS had an accuracy rate of 40%. During tests of individual documents, SSS 
performed with an accuracy between 20% to 40%, with an average of 33.3%. For the test 
comparing the entire known corpus with the unknown, SSS achieved an accuracy of 60%. 

JGAAP Results. A total of 30 test runs were conducted using the test documents. Ten 
additional test runs were conducted using the four blocks of known and four blocks of unknown 
works. The overall accuracy for JGAAP when using Naïve Bayes analysis was 74.4% but only 
43.7% when relying on K-Nearest Neighbor (KNN). Detailed analysis of the results of different 
numbers of blocks analyzed is presented in Table 4. During the testing to distinguish a known text 
block from an unknown block, JGAAP performed poorly, with a maximum accuracy of 25%. It 
was only after manipulating the settings of the program that this was increased to 87.5%. To 
achieve this increase in accuracy, discrete lexical frequencies were added as events, the standard 
deviation culler (which sought items with the largest standard deviation) was added, and Burrows 
Δ (which quantifies differences in event drivers of different texts) was used as the analysis method. 
These were added in attempts to improve accuracy per the recommendations of settings offered by 
the authors of the software (EVL Labs, 2018). 

Table 4 
Results for Tests Using JGAAP 
Number of Test Text Blocks Accuracy % (Naïve Bayes) Accuracy % (K-Nearest) 
1 82.9 57.5 
2 86.1 75.0 
3 57.8 34.4 
4       77.5       26.4 
5       70.6       25.0 

 
JStylo Results. A total of 30 test runs were conducted using the test documents. Ten 

additional test runs were conducted using the four blocks of known and four blocks of unknown 
works. JStylo provided the most consistent and accurate results across all tests. The overall 
accuracy for JStylo when using Naïve Bayes analysis was 86.3% and 88.9% when utilizing Simple 
Logistic Regression. Detailed analysis of the results of different numbers of blocks analyzed is 
presented in Table 5. JStylo was able to dependably identify the majority of cases (83.3%) when 
a known author text block was added during testing.  

Table 5 
Results for Tests Using JStylo 
Number of Test Text Blocks Accuracy % (Naïve Bayes) Accuracy % (Log. Reg.) 
1 80.0 80.0 
2 90.0 90.0 
3 86.7 86.7 
4       90.0       95.0 
5       88.0       92.0 
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To further assess JStylo software, the data available for processing was limited. During this 
more rigorous testing, the number of features was reduced to five including the substitution of one 
feature that was not used in primary testing (unique words, complexity, character n-grams, word 
n-grams, lexical frequencies [added]). The number of known text blocks was reduced to two and 
the number of other blocks was reduced to four. Lastly, only one text block was used as the 
unknown. JStylo was still able to identify the block correctly at 91% accuracy (82% for Naïve 
Bayes, 100% for Simple Logistic Regression), albeit this procedure was only repeated five times 
with different test blocks.  

 
Discussion 

 Based on the results of this pilot study, COTS stylometry analysis software has significant 
promise to evaluate document authorship. This, in theory, could easily be extended to student 
submissions. In this study, academic texts of a specific context and genre were used to assess the 
software, thus furthering the advocation of applying these methods to detect contract cheating. 
Considering that current methods and tools to detect contract cheating are tediously time-
consuming (such as when using graders) and ineffective (in the case of text-matching detection 
software) the use of stylometry may provide a path for dealing with the growing issue of 
ghostwritten student work. 
 Clearly, stakeholders must have confidence in contract cheating assessment tools in order 
to use them for academic integrity enforcement. Accusing a student of contract cheating is a serious 
matter that could potentially affect their future at an institution. Further, it could potentially lead 
to legal action by the student to counter the claim. So even in light of the capacity of stylometry 
analysis, the variation in performance of the different software shows that careful selection of 
options and utilization are necessary to achieve reasonable accuracy.  
 It appears that SSS is not a good candidate to use in an academic setting. The software was 
easy to use and its interface was very intuitive, though text loading was more tedious than other 
software options. The very basic forms of analysis offered by the software are likely the reason 
why it performed so poorly. Moreover, the chi-square analysis did not work well due to many cells 
having inadequate counts to be an appropriate statistical tool even when combining cells. SSS does 
provide a graphical display of results, which can potentially be used to “eyeball” differences; 
however, stakeholders would likely balk at the idea of using this a primary means of detection. 
This feature could be a supplemental tool for assessors but not a primary means of identifying 
contract cheating. SSS seems to be more powerful when using much larger documents than used 
in this study though, again, this significantly limits its utility in a typical contract cheating scenario.  
 Although JGAAP is very sophisticated in terms of its background functioning, it was 
relatively easy to use. Uploading texts was efficient as was the selection of options. The challenge 
is to know which options to select, therefore the research literature was consulted for guidance. 
Further experimentation will likely yield more effective combinations of options. With an overall 
performance between 43.7% and 74.4%, JGAAP performed better than SSS. Naïve Bayes analysis, 
the stronger performer, would thus be the recommended setting for analyzing documents, though 
more thorough testing would be necessary. Although the performance of JGAAP in evaluating 
smaller quantities of text chunks was initially encouraging, with both types of analysis achieving 
over 90% accuracy, performance dramatically reduced to 25% when adding a known author text 
block. This calls into question whether the more accurate results were a function of the software 
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being biased toward selecting the unknown author. Reiterating the need to explore the various 
features and analyses available in JGAAP, when such adjustments were made, the software was 
able to perform at 87.5% in classifying a known text block as “known” when mixed with “other” 
test blocks.  
  JStylo performed the best among all three software packages across the range of testing. 
The user interface was straightforward and the adding of texts was easy to conduct. Just like 
JGAAP, JStylo has numerous options from which to choose. Although the program performed 
well, further exploration into the capabilities of various combinations of features and analyses will 
ensure that any improvements in performance can be identified. Both Naïve Bayes and Simple 
Logistic Regression analyses outperformed other software during primary testing. With an 
accuracy of 88.9%, Simple Logistic Regression showed the best promise for potential use in cases 
of suspected contract cheating. Even more evidence of this was 100% accuracy of Simple Logistic 
Regression when categorizing a known text block as “known” when mixed with “other” test 
blocks. 
 Comparing the use of stylometry software to existing contract cheating detection methods, 
it appears that the former is superior both in terms of accuracy and resources required. Current 
methods include text-matching detection software and human evaluators. Current text-matching 
software unvaryingly has been shown to be unable to highlight ghostwritten texts and new services 
designed to investigate authorship have yet to be tested by a wide range of users and researchers. 
Evaluator-based detection is extremely time-consuming and assumes the grader is either familiar 
with the previous work of the student, has received training about attributes of ghostwritten works, 
or both. Neither of these necessary defenses is likely to exist on a wide scale in contemporary 
higher education. In particular, as stated by Singh and Remenyi (2016), familiarity with student 
writing has become more difficult through growing class sizes and different graders being used 
across assignments. As noted by Lines (2016), even if contract cheating is suspected by evaluators, 
one cannot be sure that the cause of the suspicion is because a student’s work has genuinely 
improved or they simply are weak academic writers.  
 The accuracy of human-based detection has been shown to vary significantly. In Dawson 
and Sutherland-Smith (2018), graders averaged 57.2% accuracy when classifying contract versus 
legitimate works and 62% of contract texts were correctly identified. Even after receiving training 
about catching contract cheating in Dawson and Sutherland-Smith’s (2019) follow-up study, 
among contractor written papers, graders only identified 24.6% correctly although overall 
accuracy reached 85.7%. Not only can JStylo outperform these human-based procedures, this 
software would also take substantially less time and effort than a series of manual grading 
exercises. Moreover, both Rogerson (2017) and Dawson and Sutherland-Smith (2019) admitted 
that a grader’s “hunch” would not be sufficient evidence to support a contract cheating allegation; 
thus, having additional tools, such as JStylo, are critical to appropriate handling of such 
occurrences.  
 While research by Neal et al. (2018) and Brocardo et al. (2015) reported high levels of 
accuracy in authorial identification, around 95%, these studies used much more sophisticated 
methods of analysis. Further, these researchers had significant knowledge of computer 
programming and used models that would require users to have the same level of knowledge. This 
certainly would require more out of assessors than can be reasonably expected in most cases. Thus, 
relying on COTS software such as JGAAP and JStylo are more practical options (Juola, 2017).  
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 As with all studies, this research was subject to certain assumptions, limitations, and 
delimitations. The study was limited by potential variations within the documents randomly chosen 
to include in the study. An assumption was that since the documents came from the same journal, 
they were written in the same topic area, had similar tone, and were of comparable sentiment. The 
findings were also limited due to potential difference in software performance on different types 
of documents thus, at this point, it cannot be assumed that software accuracy performance will be 
consistent across types of authors, categories of documents, or genres. The accuracy of stylometry 
software is potentially limited if an author attempts to obfuscate their work in an attempt to 
replicate a specific authorial fingerprint, although it seems unlikely that a ghostwriter would have 
the knowledge, time, or energy to do this for a student. One delimitation was the selection of a 
specific journal on which to focus this pilot study. Another delimitation was the sample sizes. 
Although the selected sample sizes followed the guidance of available literature, larger and more 
diverse samples may have resulted in different findings. Future comprehensive studies are planned 
to address these weaknesses to provide more robust conclusions. 
 Although stylometry software may not yet be suitable for a standalone solution to contract 
cheating, it could, and conceivably should, be part of the evolutionary and systematic approach 
advocated by Rogerson (2017). Based on the findings of this study as well as those within the 
literature support, a methodical procedure should be developed for stakeholders to adopt in efforts 
to curb contract cheating. First, identification of caution “flags” is essential. These include a 
noticeable change in student writing, oddities in language (e.g., British versus American English), 
unusually low text similarity values, not answering the question, inappropriate references, 
misrepresented references, and past academic integrity violations by the student. One or more of 
these flags may warrant further investigation via one or more COTS stylometry software packages. 
This would also build a better case for stakeholders prior to confronting a student. Lastly, the 
knowledge by students that there are computer-based contract cheating detection methods in use 
may act as a deterrent.  

 
Conclusion 

 The purpose of this pilot study was to determine if stylometry software could be a potential 
solution to the growing problem of online contract cheating. Based on the findings of this study, it 
is apparent that such software is capable of accurately detecting anomalies in authorship among 
documents. Just as text-matching detection software is not infallible and requires some level of 
interpretation, stylometry analysis cannot be expected to provide 100% accuracy and may require 
further appraisal by graders. Yet stylometry appears to provide the most auspicious solution to the 
quandary of ghostwritten assignments available. Further, the ease of use by computer novices as 
well as the lack of cost indicates that COTS stylometry software can provide a practical and low-
cost answer to the question of how to detect and deter contract cheating. Moreover, upon 
familiarizing oneself with these software packages, testing could be completed within minutes in 
lieu of more tedious sleuthing through student papers. 
 What is clear is that stakeholders are losing the contract cheating battle and can no longer 
stand idle in the face of the issue. With further research into the best practices in terms of features, 
processing, and analytics called upon by the software can provide even more accuracy. As part of 
a systematic approach to contract cheating, stylometry software gives stakeholders a semblance of 
hope in dealing with this mounting threat to academic integrity. Just as importantly to catching 
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contract cheaters, stylometry provides a means of avoiding accusing students who submit 
legitimate work of something they have not done. In sum, stylometry software is an obvious and 
competent means of addressing contract cheating.  
Recommendations for Future Research 
 Based on the finding of this study coupled with exigent literature, the following 
recommendations are made for future research. Researchers are encouraged to conduct a larger 
study utilizing JGAAP and JStylo to identify the best practices of software settings to improve 
accuracy and reliability. It is also recommended that a study takes place assessing stylometry 
software using actual student work versus contracted documents that address the same question or 
task. Lastly, studies on new contract cheating services, such as Turnitin’s Authorship Investigate, 
should be undertaken to assess their capabilities. 
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Appendix A: Figures 

 

 
Figure 1. Document selection process for SSS. 
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Figure 2. Testing procedures for SSS. 
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Figure 3. Document selection process for JGAAP and JStylo. 
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Figure 4. Testing procedures for JGAAP and JStylo. 
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