Learning Analytics Methods, Benefits, and Challenges in Higher Education: A Systematic Literature Review
Abstract
Keywords
Full Text:
PDFReferences
AlShammari, I. A., Aldhafiri, M. D., & Al-Shammari, Z. (2013). A meta-analysis of educational data mining on improvements in learning outcomes. College Student Journal, 47(2), 326-333.
Althubaiti, A., & Alkhazim, M. (2014). Medical colleges in Saudi Arabia: Can we predict graduate numbers? Higher Education Studies, 4(3), 1-8.
Armayor, G.M., & Leonard, S. T. (2010). Graphic strategies for analyzing and interpreting curricular mapping data. American Journal of Pharmaceutical Education, 74(5), 1-10.
Arnold, K. E., & Pistilli, M. D. (2012, April 29). Course signals at Purdue: Using learning analytics to increase student success. Proceedings of the 2nd International Conference on Learning Analytics and Knowledge (pp. 267-270). New York, NY: ACM. doi: 10.1145/2330601.2330666
Baker, R. (2010). Data mining for education. International Encyclopedia of Education, 7, 112-118.
Baker, R., & Yacef, K. (2009). The state of educational data mining in 2009: A review and future visions. Journal of Educational Data Mining, 1(1), 3—16.
Bhardwaj, B. K., & Pal, S. (2011). Data mining: A prediction for performance improvement using classification. International Journal of Computer Science and Information Security, 9(4), 136-140.
Bienkowski, M., Feng, M., & Means, B. (2012). Enhancing teaching and learning through educational data mining and learning analytics: An issue brief. U.S. Department of Education, Office of Educational Technology. Washington, D.C. Retrieved from http://www.ed.gov/technology.
Bottles, K., Begoli, E., & Worley, B. (2014). Understanding the pros and cons of big data analytics. Physician Executive, 40(4), 6-12.
Brown, M. (2012). Learning analytics: Moving from concept to practice. EDUCAUSE Learning Initiative. Retrieved from http://net.educause.edu/ir/library/pdf/ELIB1203.pdf
Buckingham Shum, S., & Ferguson, R. (2012). Social learning analytics. Educational Technology & Society, 15(3), 3-26.
Campbell, J. P., De Blois, P. B., & Oblinger, D. G. (2007). Academic analytics: A new tool for a new era. Educause Review, 42(4), 40-57. Retrieved from http://www.educause.edu/ero/article/academic-analytics-new-tool-new-era
Campbell, J. P., & Oblinger, D. G. (2007). Academic analytics. Educause. Retrieved from http://net.educause.edu/ir/library/pdf/pub6101.pdf.
Clow, D. (2012). The learning analytics cycle: Closing the loop effectively. Proceedings of the 2nd International Conference on Learning Analytics and Knowledge (pp. 134-138). New York, NY: ACM. doi:10.1145/2330601.2330636
Clow, D. (2013). An overview of learning analytics. Teaching in Higher Education, 18(6), 683-695. doi:http://dx.doi.org/10.1080/13562517.2013.827653
Cooper, H. (1988). The structure of knowledge synthesis: A taxonomy of literature
reviews. Knowledge in Society, 1, 104-126.
Dawson, S., & Siemens, G. (2014, September). Analytics to literacies: The development of a learning analytics framework for multiliteracies assessment. International Review of Research in Open and Distance Learning, 15(4), 284-305.
DiCerbo, K. E. (2014). Game-based assessment of persistence. Journal of Educational Technology & Society, 17(1), 17-28.
Dietz-Uhler, B., & Hurn, J. E. (2013, Spring). Using learning analytics to predict (and improve) student success: A faculty perspective. Journal of Interactive Online Learning, 12(1), 17-26.
Dyckhoff, A. L., Zielke, D., Bültmann, M., Chatti, M. A., & Schroeder, U. (2012). Design and implementation of a learning analytics toolkit for teachers. Journal of Educational Technology & Society, 15(3), 58-76.
EDUCAUSE. (2010). Next generation learning challenges: Learner analytics premises. EDUCAUSE Publications. Retrieved from http://www.educause.edu/Resources/NextGenerationLearningChalleng/215028
Elias, T. (2011). Learning analytics: Definitions, processes and potential (Report). Retrieved from http://learninganalytics.net/LearningAnalyticsDefinitionsProcessesPotential.pdf
Ferguson, R. (2012). Learning analytics: Drivers, developments and challenges. International Journal of Technology Enhanced Learning, 4(5/6), 304—317.
Fournier, H., Kop, R., & Sitlia, H. (2011). The value of learning analytics to networked learning on a personal learning environment. Proceedings of the Fourth International Conference on Learning Analytics and Knowledge (pp. 246-250). New York, NY: ACM. doi:10.1145/2567574.2567613
Grummon, P. T. H. (2009). Trends in higher education. Planning for Higher Education, 37(4), 48-57.
Hsinchun, C., Chiang, R. L., & Storey, V. C. (2012). Business intelligence and analytics: From big data to big impact. MIS Quarterly, 36(4), 1165-1188.
Hung, J.L., Hsu, Y.C., & Rice, K. (2012). Integrating data mining in program evaluation of k-12 online education. Educational Technology & Society, 15(3), 27-41.
Hung, J., & Zhang, K. (2012). Examining mobile learning trends 2003-2008: A categorical meta-trend analysis using text mining techniques. Journal of Computing in Higher Education, 24(1), 1-17. doi:http://dx.doi.org/10.1007/s12528-011-9044-9
Jantawan, B., & Tsai, C. (2013). The application of data mining to build classification model for predicting graduate employment. International Journal of Computer Science and Information Security, 11(10), 1-7.
Johnson, L., Levine, A., Smith, R., & Stone, S. (2010). The horizon report: 2010 edition (Report). Retrieved from http://www.nmc.org/pdf/2010-Horizon-Report.pdf
Johnson, L., Smith, R., Willis, H., Levine, A., & Haywood, K., (2011). The horizon report: 2011 edition (Report). Retrieved from https://net.educause.edu/ir/library/pdf/HR2011.pdf
Kay, D., Korn, N., & Oppenheim, C. (2012). Legal, risk and ethical aspects of analytics in higher education (White Paper). Retrieved from http://publications.cetis.ac.uk/wp-content/uploads/2012/11/Legal-Risk-and-Ethical-Aspects-of-Analytics-in-Higher-Education-Vol1-No6.pdf
Kostoglou, V., Vassilakopoulos, M., & Koilias, C. (2013). Higher technological education specialties and graduates' vocational status and prospects. Education & Training, 55(6), 520-537. doi:http://dx.doi.org/10.1108/ET-03-2012-0026
Lias, T. E., & Elias, T. (2011). Learning analytics: The definitions, the processes, and the potential (Report). Retrieved from http://learninganalytics.net/LearningAnalyticsDefinitionsProcessesPotential.pdf
Mardikyan, S., & Badur, B. (2011). Analyzing teaching performance of instructors using data mining techniques. Informatics in Education, 10(2), 245-257.
McNeely, C. L., & Hahm, J. (2014). The big (data) bang: Policy, prospects, and challenges. Review of Policy Research, 31(4), 304-310.
Pardo, A., & Siemens, G. (2014). Ethical and privacy principles for learning analytics. British Journal of Educational Technology, 45(3), 438-450. doi:10.1111/bjet.12152
Pea, R. (2014). The learning analytics workgroup: A report on building the field of learning analytics for personalized learning at scale (Report). Retrieved from https://ed.stanford.edu/sites/default/files/law_report_complete_09-02-2014.pdf
Peer, P., Bule, J., Gros, J. Ž., & Štruc, V. (2013). Building cloud-based biometric services. Informatica, 37(2), 115-122.
Picciano, A.G. (2012). The evolution of big data and learning analytics in American higher education. Journal of Asynchronous Learning Networks, 16 (3), 9-20.
Picciano, A. G. (2014). Big data and learning analytics in blended learning environments: Benefits and concerns. International Journal of Artificial Intelligence and Interactive Multimedia, 2(7), 35-43.
Reyes, J. A. (2015). The skinny on big data in education: Learning analytics simplified. TechTrends, 59(2), 75-79.
Romero, C., & Ventura, S. (2010). Educational data mining: A review of the state of the art. IEEE Transactions on Systems, Man, and Cybernetics, Part C: Applications and Reviews, 40(6), 601-618.
Sayed, M., & Jradi, F. (2014). Biometrics: Effectiveness and applications within the blended learning environment. Computer Engineering and Intelligent Systems, 5(5), 1-9.
Scheffel, M., Drachsler, H., Stoyanov S., & Specht, M. (2014). Quality indicators for learning analytics. Educational Technology & Society, 17(4), 117—132.
Sclater, N. (2014a, September 18). Code of practice “essential” for learning analytics. Retrieved from http://analytics.jiscinvolve.org/wp/2014/09/18/code-of-practice-essential-for-learning-analytics/
Sclater, N. (2014b, November). Code of practice for learning analytics: A literature review of the ethical and legal issues. Retrieved from http://repository.jisc.ac.uk/5661/1/Learning_Analytics_A-_Literature_Review.pdf
Sharda, R., Adomako Asamoah, D., & Ponna, N. (2013). Research and pedagogy in business analytics: Opportunities and illustrative examples. Journal of Computing & Information Technology, 21(3), 171-183. doi:10.2498/cit.1002194
Slade, S., & Prinsloo, P. (2013). Learning analytics: Ethical issues and dilemmas. American Behavioral Scientist, 57(10), 1510-1529. doi: 10.1177/0002764213479366
Vahdat, M., Ghio, A., Oneto, L., Anguita, D., Funk, M., & Rauterberg, M. (2015). Advances in learning analytics and educational data mining. Proceedings from 2015 European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, Belgium. Retrieved from http://www.idemployee.id.tue.nl/g.w.m.rauterberg/publications/ESANN2015paper1.pdf
West, D. M. (2012, September). Data mining, data analytics, and web dashboards. Governance Studies at Brookings, 1-10. Retrieved from Brookings.edu website at: http://www.brookings.edu/~/media/research/files/papers/2012/9/04%20education%20technology%20west/04%20education%20technology%20west.pdf
Xu, B., & Recker, M. (2012). Teaching analytics: A clustering and triangulation study of digital library user data. Journal of Educational Technology & Society, 15(3), 103-115.
DOI: http://dx.doi.org/10.24059/olj.v20i2.790
Copyright (c) 2016 Online Learning Journal