Using Learning Analytics to Identify Medical Student Misconceptions in an Online Virtual Patient Environment
Abstract
Keywords
Full Text:
PDFReferences
Ahopelto, I., Mikkilä-Erdmann, M., Olkinuora, E., & Kääpä, P. (2011). A follow-up study of medical students' biomedical understanding and clinical reasoning concerning the cardiovascular system. Advances in Health Sciences Education, 16, 655-668.
Anderson, J. R., Boyle, C. F., Corbett, A. T., & Lewis, M. W. (1990). Cognitive modeling and intelligent tutoring, Artificial Intelligence, 42, 7-49.
Baker, R., & Siemens, G. (2014). Educational data mining and learning analytics. In R. K. Sawyer (Ed.), The Cambridge handbook of the learning sciences (2nd ed., pp. 253-272). Cambridge, UK: Cambridge University Press.
Boshuizen, H. P. A., van de Wiel, M. W. J., & Schmidt, H. G. (2012). What and how advanced medical students learn from reasoning through multiple cases. Instructional Science, 40, 755-768.
Danielson, J. A., Mills, E. M., Vermeer, P. J., Preast, V. A., Young, K. M., Christopher, M. M., et al. (2007). Characteristics of a cognitive tool that helps students learn diagnostic problem solving. Educational Technology, Research and Development, 55(5), 499-520.
Duivesteijn, W., & Arno, A. (2011). Exploiting false discoveries — Statistical validation of patterns and quality measures in subgroup discovery. In IEEE 11th International Conference on Data Mining (ICDM) (pp. 151-160). Vancouver, BC: IEEE.
Ellaway, R. H., Pusic, M. V., Galbraith, R. M., & Cameron, T. (2014). Developing the role of big data and analytics in health professions education. Medical Teacher, 36(3), 216-222.
Fall, L. H., Berman, N. B., Smith, S., White, C. B., Woodhead, J. C., & Olson, A. L. (2005). Multi-institutional development and utilization of a computer-assisted learning program for the pediatrics clerkship: the CLIPP Project. Academic Medicine, 80(9), 847-855.
Ferguson, R. (2012). Learning analytics: drivers, developments and challenges. International Journal of Technology Enhanced Learning, 4(5-6), 304-317.
Feyzi Behnagh, R., Azevedo, R., Legowski, E., Reitmeyer, K., Tseytlin, E., & Crowley, R. (2014). Metacognitive scaffolds improve self-judgments of accuracy in a medical intelligent tutoring system. Instructional Science, 42(2), 159-181.
Graber, M. L., Franklin, N., & Gordon, R. (2005). Diagnostic error in internal medicine. Archives of Internal Medicine, 165, 1493-1499.
Herrera, F., Carmona, C. J., Gonzalez, P., & Jose del Jesus, M. (2011). An overview on subgroup discovery: Foundations and applications. Knowledge and information systems, 29(3), 495-525.
Kay, J., Reimann, P., Diebold, E., & Kummerfeld, B. (2013). MOOCs: So many learners, so much potential. IEEE Intelligent Systems, 28(3), 70-77.
Klösgen, W. (2002). Subgroup discovery. In W. Klösgen and J. Zytkow (Eds.), Handbook of data mining and knowledge discovery. New York: Oxford University Press.
Konijn, R., Duivesteijn, W., Meeng, M., & Knobbe, A. (2014). Cost-based quality measures in subgroup discovery. Journal of Intelligent Information Systems, 1-19.
LavraÄ, N., Flach, P., & Zupan, B. (2000). Rule evaluation measures: A unifying view. In Inductive Logic Programming, Lecture Notes in Computer Science, vol. 1634 (pp. 174-185). Berlin: Springer.
Mayo Clinic (2015). Diseases and Conditions: Heartburn. http://www.mayoclinic.org/diseases-conditions/heartburn/in-depth/heartburn-gerd/art-20046483 (accessed July 17, 2015).
Norman, G. (2005). Research in clinical reasoning: past history and current trends. Medical Education, 39(4), 418-427.
Norman, G. R., & Eva, K. W. (2010). Diagnostic error and clinical reasoning. Medical Education, 44(1), 94-100.
Shute, V. J., & Zapata-Rivera, D. (2012). Adaptive educational systems. In P. Durlach (Ed.), Adaptive technologies for training and education (pp. 7-27). New York: Cambridge University Press.
Smith, S., Kogan, J. R., Berman, N. B., Dell, M. S., Brock, D. M., & Robins, L. S. (in press). The development and preliminary validation of a rubric to assess medical students' written summary statements in virtual patient cases. Academic Medicine.
Van Lehn, K. (1988). Toward a theory of impasse-driven learning. In H. Mandl & A. Lesgold (Eds.), Learning issues for intelligent tutoring systems (pp. 19-4 1). New York: Springer-Verlag.
Wahlgren, C.-F., Edelbring, S., Fors, U., Hindbeck, H., & Stahle, M. (2006). Evaluation of an interactive case simulation system in dermatology and venereology for medical students. BMC Medical Education, 6, 40.
Wrobel, S. (1997). An algorithm for multi-relational discovery of subgroups. In Proceedings of the first European symposium on principles of data mining and knowledge discovery (pp. 78-87). New York: Springer.
additional references blinded for review]
DOI: http://dx.doi.org/10.24059/olj.v20i2.802
Copyright (c) 2016 Online Learning Journal